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Questions of a study of acoustic and seismic wave propagation in the ocean and the 
underlying medium, associated with problems of marine hydrolocat• (sonar) and the 
investigation of tsunami wave predecessors caused by underwater volcanic eruptions 
are of great interest at this time. The simplest model, a point source of vibrations 
located in a fluid layer at a certain range from the bottom, is used to describe 
the mentioned wave processes. Wave fields in a fluid and elastic base are investi- 
gated in this paper, analytical formulas are obtained, and results of a numerical 
analysis are presented. 

Harmonic axisymmetric vibrations caused by the vibration of a point source in a layer 
(0 ~ R < ~, 0 ~ 0 < 27, 0 ~ Z ~ H) of an ideal compressible weightless fluid are studied.~ 
The layer is on an elastic half-space (0 ~ R < ~, 0 ~ 0 < 27, --~ < Z ~ 0). There is a 
lumped source of harmonic vibrations of a-function type at the point (0, 0, ho), 0 ~ ho < H. 

The velocity potential ~(R, Z, t) of the fluid particles satisfies the wave equation [I] 
with right side of the form CoR-I~(R)~(Z- ho)e -i~t. 

The components of the displacement vector Ur(R , Z, t), Uz(R , Z, t) in an elastic medium 
under axial symmetry satisfy the system of Lam~ dynamic equations in a cylindrical coordinate 
system [2]. The fluid surface is free of stresses and the normal velocities are given equal 
on the interfacial surface between the fluid and the elastic medium. Moreover, the wave radia- 
tion conditions should be satisfied at infinity. Using the method of integral transforms, we 
find the potential of the fluid particle velocity and the displacement in the elastic medium: 
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where 
r ---- R/H; z ---- Z/H; h = ho/H; 
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~, p, Vs, Vp are, respectively, the shear modulus, density, transverse and longitudinal wave 
velocities in the elasticphalf-space, pois the fluid density, ~= 2~f, f is the vibrational 
frequency of the perturbation source, Vo is the sound speed in the fluid, Co is the ampli- 
tude function of the pressure, and ~(x) is the delta function. The semiinfinite contour of 
integration F in (i) coincides with the whole real line from 0 to +~, except for singulari- 
ties of the integrand (zeros and branch points of D(%)) which it bypasses from below. Such 
a selection of the contour is governed by the wave radiation conditions and is described in 
detail in [3]. 

Taking account of the relation between the potential and the fluid particle velocities, 
the velocity field in the whole space occupied by the fluid as well as the displacement field 
in the whole elastic half-space can be computed by using (i). The particular case for a source 
on the bottom of a reservoir is considered in [4]. 

The zeros of the denominator D(%) of the integrands in (i) are investigated numerically 
on a digital computer as a function of the reduced frequency ~2 (2). It is established that 
all the real zeros of the denominator D(1) lie in a certain angle formed by the lines % = • 
and % = k. Only the very first zero, starting from a certain time, will emerge upward from 
this angle and later pass somewhat above the line % = k. The characteristic dependence of 
the zeros on the frequency • is presented in Fig. i. 

As is seen from (I) in the far zone, i.e., for r >> i, the integrands are rapidly os- 
cillating functions because of the Bessel functions. Consequently, here numerical methods 
of calculating the integrals are slightly effective. Such integrals are evaluated by using 
residue theory. To do this, by using relationships between the Bessel functions of the first 
and third kind [5], the contour F is expanded on the whole real axis and closed in the plane 
where the integrand decreases. The negative real singularities of the integrand are bypassed 
from above. Consequently, the initial integral is represented as the sum of three components. 
The first is the sum of residues at the real positive poles, finite in number. A Rayleigh 
wave that decreases at infinity (for r § ~) orO(r -I/2) corresponds to each term of this sum. 
The second component is the residues at the complex poles; it induces an exponentially de- 
creasing contribution of order O(e -~r) into the total sum, where s is the lower bound of the 
imaginary component of the complex poles. This component governs the penetrating wave. The 
third component is the integrals over the slit edges drawn from the branch points % ~ ~i and 
% =• The contribution of this component to the total sum for large r is of the order of 
@(r-3/2). Because of the estimates presented, only the first component corresponding to the 
Rayleigh waves yields the main contribution to the value of the integral (i) for Izl << 1 
at a sufficient distance from the source (r >> i). 

The numerical analysis performed for the wave fields in the elastic and liquid media is 
illustrated in Figs. 2-4. The amplitude distribution functions of the velocity potential ~. 
10 -I and the velocities Vr, Vz themselves over the depth of the fluid layer are shown by lines 
1-3 in Fig. 2. The distance along the horizontals between the vibration source and the point 
being investigated equals I00 layer thicknesses. The source itself is at a distance h = 0.i 
from the bottom. The coefficient Co in (i) is taken equal to i, and the depth of the reser- 
voir is H = 100 m. The amplitudes are computed in meters. Computations are executed for 
• = 2.35. The dashed line shows the value of the amplitude function V z at a point of distance 
z = 0.i away from the bottom, and at a distance r = i00 along the horizontal from the source 
itself at depths h (0~h~l) in the layer. In this case the amplitude functions for ~ and 
Vr agree with the values of ~ and Vr in the preceding ease. 
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The amplitude distribution functions of ~-I0 -z, Vz'10 , and V r are shown in Fig. 3 by 
the lines 1-3, respectively, as functions of the distance r between the source and the point 
of recording the vibrations. As before, the source is here at a distance h = 0.i from the 
bottom of the reservoir and the receiver is at the bottom itself. Computations are per- 
formed for • = 2.35. It is clear from Figs. 2 and 3 how the wave field is distributed over 
the whole domain occupied by the fluid. 

The dependence of the amplitude functions of ~'i0 -I, Vr, and V z on the bottom of the 
reservoir and the amplitude functions of the displacement U r and U z (the lines 1-5, respec- 
tively) at the surface of the elastic half-space on the reduced frequency x2 is represented 
in Fig. 4 for the same values h = 0.i and r = i00. Taking account of the relation (2) be- 
tween the reduced frequency x~ and the parameters ~, H, ~, Fig. 4 yields a representation 
of the dependence of the velocity potential ~, the velocities Vr, Vz, and the displacements Ur, 
U z on ~, H, ~. Analogous curves are obtained for a large number of different points of the 
fluid layer and the elastic half-space. They have a form similar to Figs. 2-4. 
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